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As in Sect. 2, conditions (5.11) can be reduced to the form 

n -5 E’Z > 0, V”>VZO (2av2” = b + r/b”- - inc -; (t + vz,) t?) 

A similar situation obtains in case (4.1). 
Thus, to within terms of the order e3 the geometric interpretation of the set of steady 

motions given in Sects. 1 and 3 and also stability conditions (2.7) and (4.3) for cases 
(1.1) and (4.1)‘ respectively, are also valid for the unrestricted formulation of the prob- 

lem. Conditions (2.7) and (4.3) are the stability conditions with respect to ?i;i, pi, R. % 
I’~‘, pi’, R’, x’, 6’ with allowance for the perturbability of the orbit. 

6, Stability conditions (2.7) and (4.3) remain valid in the case where the satellite 

contains, in addition to the rotors, cavities completely filled with liquid [7]. 
The author is grateful to V. V. Rumiantsev for his comments and useful suggestions. 
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The dynamics of an electromagnetically driven electromechanical trigger regulator 
with two pulses per period is considered. The nonlinear third-order differential equation 
is investigated by the method of point transformations. The decomposition of the para- 
meter space into domains whose points correspond to various qualitative structures of 
the phase space is established. The domains of existence of several stable periodic mo- 

tions in the parameter space are isolated. 
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1, The equation of motion,, The motion of an electromagnetically driven 
electromechanical trigger regulator with two pulses per period can be investigated by 
means of the model described in [I]. The contact device in the modified model closes 
the electrical circuit both with left- to-right and with reverse motion of the oscillator 
(i. e. there are two pulse zones situated symmetrically with respect to the position of 

static equilibrium). 

The equations of motion of the above dynamic system in dimensionless variables are 

y- + a!# = If for .z*,<o, lx---b--d]<b 

6’. 4. s --_ - I 7 
IX. I 

for 2’>o, I.~+-t-_t.(5I>b 
(1.2) 

21’0 for x’<n, Is-b--rl]>b 

Transition from (1.2) to (1.1) occurs for I = -2h - n’, t’ > 0 or r = 4b + d, J‘ < 0, 
and from (1.1) to (1.2) for x = --d, r’ > 0 or I - ~1, .K’ < 0. 

2, The point tfanrformatforlr, The phase space 2. Y, z = 2’ consisting 
of part of the plane and the two thee-dimensional domains matched to it is symmetric 

with respect to the y-axis. 

We define the transformation S, as the mapping of a point of the half-line J?I (X = 
= -2b - rf, FJ = 0, z > 0) with the coordinate t -= II along the trajectories of the upper- 
half-space into a point with the coordinate z = z’ on the plane x = -4. The transfor- 

mation S, is defined by virtue of the adopted idealization of contact device actuation 

121) as an instantaneous jump along the plane 5 = --d onto the half-line rz (x = --d, 
y = 0, z > 0) of a representing point which has reached the plane X z ---de 

The transformation S, is defined as the mapping of a point of the half-line I’, with 
the coordinate L = VI into a point of the half-line FI (symmetric to T’I with respect to 
the y -axis). By virtue of the symmetry of the phase space of our problem we can iden- 

tify the half-lines. fr and G. 
Investigation of the decomposition of the phase space into trajectories reduces to the 

investigation of the point transformation T = SISISR of the half-line rI into itself (the 

bar indicates mapping into a symmetric point following execution of the transformation 

w%%J. 

We have the following analytic expressions for the transformation SL : 

u=&-$2beost+(r-d-_-)(1 - cos z) + 3F (a, z) - F (2a, z)] 

.=& [2b-(r--d---l)(l -COS%) -2@((a, z) +fD’fzu, z)] 

where 1 
F (0% b) = $ + &I (e- 

nr _ cosz+nsinz) 

cx, (n, t) = 
2 -.. e-aT(~~~ t + a sin z) 

and T is the transit time. 
i + a8 

The surface {oil) consisting of the plane 

I- = 2b f d for b < b, EE i - @(a, x) + 3% ct, (2 a, 4 

(2.l) 

and the surface 
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r =y 1 + b Jr d - Q, (n, n) + l/z cf, (212, n) for b > bo 

isolate the domain in question in the parameter space a, b, d, r ; this domain is such 

that for all its points the half-line fI is mapped onto the plane 5 = -d along the tra- 
jectories of the upper half-space (the parameter it in expressions (8.1) varies in the range 
0 < z f Z@ <n). 

We have the following analytic expression for the ~a~forrnation,S~ : 

2 [q” + (r - d)’ ] ‘k- [ $ + ( r _ 2b _ d)“]‘!z = 2r 

The transformation S, is effected in the domain in question for 

Q > 2~~ 3 2 [(r + b) (d + b)]“’ 

(2.2) 

Here Q is the coordinate of the point on the half-line Fz through which the trajectory 
of Eq. (I. 2) tangent to the half-line Fr passes. 

8, The ~i~gul~rft~es of the phrie 1p&c6, The prtrmbtcr &pace. 
The surfaces {all, {a,), (aa) and {Cc,> decompose the parameter space a, b, r (d = 

Fig. 1 

= const > 0) into domains whose points COI- 

respond to various qualitative structures of 

the decomposition of the phase space into 
trajectories. 

For small values of the parameter r the 
point transformation T has a stable fixed 
point (a symmetric stable limit cycle exists 
in the phase space of the system). By increas- 
ing the parameter r with the remaining para- 

meters held fixed it is possible to attain values 
of r for which the indicated limit cycle and 
some of the trajectories of the phase space 

lie on a doubly twisted strip (Fig. 1). 

Further increases in the parameter r pro- 
duce the bifurcation surface {a,} defined by 
the conditions 

dvldtl = --1, v =I: 2’1 

On passing through the surface-{cl,} in the parameter space the fixed point of the 
transformation T experiences a change in stability : depending on the sign of some quan- 
tity go # 0 , it either generates two stable fixed points of the transformation T2 (for 

& < 0) or merges ci3] with two unstable points of the transformation TL (for go > 0). 

The two fixed points oftransformation’~ in the phase space of the system under consi- 
deration are associated with two nonsymmetric but symmetrically situated limit cycles. 

The surface (a,} is defined by the condition of passage of the nonsymetric limit cycle 
through the point y = z,, of the half-line Fa. Passage through the surface {a,} in the 

parameter space is accompanied by the appearance (generation from the boundary of 
the attraction domain of the rest segment - r < t < r, y = 0, z == 0) or by the dis- 

appearance (merging with the latter boundary) of two nonsymmetric limit cycles in the 

phase space. 
The surfaces {a,} and {a,) intersect. Computations show that in the neighborhood of 

their lines of intersection on the surface {a,) there exists a curve at whose points go 



Dynamics of an electromagnetic trigger regulator 725 

vanishes. Depending on the signs of the quantities [4] go and h, , the neighborhood of 

the fixed point of the transformation T can contain one or two pairs of fixed points of 
the transformation T2 (two or four nonsymmetric limit cycles in the phase space). From 

the curve defined by the condition g,, = 0 and situated on the surface {aa) there emer- 
ges the bifyrcation surface {a,} on which the two pairs of fixed points of the transforma- 
tion merge and vanish [4] (the points of the surface {a,) are associated with a phase 

space with two semistable nonsymmetric limit cycles). 

Fig. 2 Fig. 3 

The Lamdray diagram constructed in the neighborhood of the point of intersection of 
the curves v = v (u)(2.1) and L’I= UI (u) (2.2) (the fixed point of the transformation T) 

for parameter values taken from the neighborhood of the surface Cc%? is shown in Fig.2. 
The fixed points of the transformation TZ can be investigated by means of a “second” 
Lamkray diagram @]. As we know, the fixed point of the transformation T2 corresponds 
to the existence of a rectangle on the Lam&ray diagram. We shall presently describe a 
method for computing a function whose zeros correspond to the existence of rectangles 
on the diagram, and therefore to the existence of fixed points of the transformation ‘I”. 

We denote the abscissa of the starting point by ~(‘)(it.s ordinate is v(rl = S-l&t) ) and 
the abscissa of the end point by u@) (its ordinate is d2) = SrS,S, SrS,u(‘)). The required 

function is V (~4) = d? - P. 

The surface (a,) is defined by the parameter values for which the function V (u) touches 
the axis of abscissas twice. We determined this surface approximately on a BESM-3M 
computer for the parameter values a = 2, d = 0.2. Here are the resulting values b and 

r of the coordinates of the point A of the surface {a,} defined by the condition go = 0 

of the point B (the point of intersection of the surfaces (a,) and {as) , and of the point 

c (the point of intersection of the surfaces (as) and {a,) ): 

points A B c 
b= 0.12002 0.12065 0.121225 
r= 0.10609 0.10656 0.10698 

The surfaces (a,}, {a,), {a,) isolate a domain in the parameter space which is asso- 
ciated with a phase space with five limit cycles, namely, one stable symmetric, two 
stable nonsymmetric, and two unstable nonsymmetric cycles. In the neighborhood of the 

point A there is a bifurcation [4] which corresponds to the case h,, < 0. Figure 3 shows 
the curve of the function I/ (u) constructed for the parameter values b = 0.12060, 

p = 0.10652 taken from this domain. The zeros of the function indicated by the blank 
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circles in the figure correspond to two unstable nonsymmetric limit cycles ; the zeros 
indicated by the crossed circles correspond to the two stable nonsymmetric limit cycles; 

the zero of the function indicated by the dot 
corresponds to the stable symmetric limit cycle. 

For the domain situated between the surfaces 

{CL?} and {(x:,} to the left of the point R the 
phase space contains a symmetric unstable and 

two nonsymmetric stable limit cycles (Fig. 4). 
Figure 5 shows the corresponding curve of the 

function 1. (10 constructed for the parameter 
values 1) 0.121l40, 7 0.106375 taken from 
the indicated domain. 

For the domain situated between the surfaces 
{a,} and {CC:,} to the right of the point B the 

phase space contains a symmetric stable and 

two nonsymmetric unstable limit cycles. Figure 

Fig. 4 
6 shows the curve of the function 1’ (10 construc- 

ted for the parameter values b a~ 0.12120, 
r =- 0.10696 taken from the indicated domain. 

For the domain situated above the surfaces {CC?} and (a:J near these surfaces in the 
phase space there exists a symmetric unstable limit cycle which vanishes with further 

increases in the parameter r. The unstable limit cycle lies on adoubly twisted strip and 
does not divide the phase space into parts from which the representing points travel 

towards various attracting elements. 

Fig. 5 Fig. 6 

Here are the values of b, r2 and rs which correspond to the intersections of the sur- 
faces {a,} and 1~:~) by the planes a = 2 and d = 0.2. 

b =0.05 0.10 0.15 0.20 0.30 0.40 0.59 0.60 
rZ = 0.0442 0.090:1 0.0127 0.1551 n. i9:9 11.2212 cl.2:iSR 0.2536 
r3 = 0.0459 0.09n9 9.0126 0.1536 0.1929 0.219” il.2380 0.2520 

The author is grateful to N. N. Bautin for his numerous comments and suggestions. 
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The solution of the Stokes problem [l-4] is used to find exact expressions for the coef- 
ficients of the Legendre polynomial expansion of the potential of the Earth’s regularized 
gravitational field with the Clairaut ellipsoid taken as the equipotential surface. 

1, The solution of the Stokes problem with the Clairaut ellipsoid taken as the equi- 

potential surface of the Earth’s gravitational field [4] yields the following expression for 

the potential I/ of this field [l-3] in the Earth-centered orthogonal coordinate system 
OIYZ (the origin 0 of this system coincides with the Earth’s center ; its z-axis is direc- 

ted along the Earth’s axis of rotation): 
I- (x, y, z) = --AP (~2 + y”) - BQz” + CR (1.1) 

Here El 
P = arc tg a’ - i + ap2 , Q = E’ -arc tg e’, R = arc tg E’ (1.2) 

where e’ is the second eccentricity of the ellipsoid which is confocal with the Clairaut 
ellipsoid and passes through the point at which the potential is being determined ; -4, B 
and C are constants. 

The quantity E’ is given by the equation 

e’ = [(a” - b”) / (b‘? + Y)]l” (1.3) 

where a and b are the major and minor semiaxes of the Clairaut ellipsoid and Y is the 
positive root of the equation 

;*+&=i 

The constants A, B and C appearing in formula (1.1) can be determined from the 

relations 
A= 

u”(l +e‘q 

:! [( i + E-‘) arc. tg E - .iE] ’ 
B z “..I 

(1.5) 
I , 

uz (1 + E’) (E - arc, tg E) 

Here F = (a? - &L)“r / b is the second eccentricity of the Clairaut ellipsoid, u is the 
Earth’s angular velocity, and ge is the gravitational acceleration at the equator. 

Relations (1. l)-(1.5) yield an implicit expression for the potential I’ (5, y, z).This 
expression is inconvenient for practical computations, which is why the gravitational 


